Use of a beta microprobe system to measure arterial input function in PET via an arteriovenous shunt in rats
نویسندگان
چکیده
BACKGROUND Kinetic modeling of physiological function using imaging techniques requires the accurate measurement of the time-activity curve of the tracer in plasma, known as the arterial input function (IF). The measurement of IF can be achieved through manual blood sampling, the use of small counting systems such as beta microprobes, or by derivation from PET images. Previous studies using beta microprobe systems to continuously measure IF have suffered from high background counts. METHODS In the present study, a light-insensitive beta microprobe with a temporal resolution of up to 1 s was used in combination with a pump-driven femoral arteriovenous shunt to measure IF in rats. The shunt apparatus was designed such that the placement of the beta microprobe was highly reproducible. The probe-derived IF was compared to that obtained from manual sampling at 5-s intervals and IF derived from a left ventricle VOI in a dynamic PET image of the heart. RESULTS Probe-derived IFs were very well matched to that obtained by "gold standard" manual blood sampling, but with an increased temporal resolution of up to 1 s. The area under the curve (AUC) ratio between probe- and manually derived IFs was 1.07 ± 0.05 with a coefficient of variation of 0.04. However, image-derived IFs were significantly underestimated compared to the manually sampled IFs, with an AUC ratio of 0.76 ± 0.24 with a coefficient of variation of 0.32. CONCLUSIONS IF derived from the beta microprobe accurately represented the IF as measured by blood sampling, was reproducible, and was more accurate than an image-derived technique. The use of the shunt removed problems of tissue-background activity, and the use of a light-tight probe with minimal gamma sensitivity refined the system. The probe/shunt apparatus can be used in both microprobe and PET studies.
منابع مشابه
Quantification of brain glucose metabolism by 18F-FDG PET with real-time arterial and image-derived input function in mice.
UNLABELLED Kinetic modeling of PET data derived from mouse models remains hampered by the technical inaccessibility of an accurate input function (IF). In this work, we tested the feasibility of IF measurement with an arteriovenous shunt and a coincidence counter in mice and compared the method with an image-derived IF (IDIF) obtained by ensemble-learning independent component analysis of the h...
متن کاملEvaluation of 18F-UCB-H as a novel PET tracer for synaptic vesicle protein 2A in the brain.
UNLABELLED Synaptic vesicle protein 2 isoforms are critical for proper nervous system function and are involved in vesicle trafficking. The synaptic vesicle protein 2A (SV2A) isoform has been identified as the binding site of the antiepileptic levetiracetam (LEV), making it an interesting therapeutic target for epilepsy. (18)F-UCB-H is a novel PET imaging agent with a nanomolar affinity for hum...
متن کاملArterial input function measurement without blood sampling using a beta-microprobe in rats.
UNLABELLED The evaluation of every new radiotracer involves pharmacokinetic studies on small animals to determine its biodistribution and local kinetics. To extract relevant biochemical information, time-activity curves for the regions of interest are mathematically modeled on the basis of compartmental models that require knowledge of the time course of the tracer concentration in plasma. Such...
متن کاملA System for Continuous Estimating and Monitoring Cardiac Output via Arterial Waveform Analysis
Background: Cardiac output (CO) is the total volume of blood pumped by the heart per minute and is a function of heart rate and stroke volume. CO is one of the most important parameters for monitoring cardiac function, estimating global oxygen delivery and understanding the causes of high blood pressure. Hence, measuring CO has always been a matter of interest to researchers and clinicians. Sev...
متن کاملتخمین فشار متوسط شریانی توسط پایش تهاجمی فشار شریانی با مانومتر
Background: Direct monitoring of arterial pressure using a transducer system is not affordable in most operating rooms and ICU wards in Iran. It is, however, possible to use an aneroid manometer instead, but it is not standardized yet, nor studied enough and its measurements may not be interpretable. Methods: To study the correlation of the arterial pressure readings between a manometer and a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2011